Header News Page

News

Octubre 2021

Reseña de la conferencia: 17th Confocal Raman Imaging Symposium

Ulm, Alemania  
7 de octubre de 2021

El Simposio sobre Imágenes Raman Confocales de este año, celebrado de forma virtual, alcanzó un nuevo nivel de convocatoria con un número récord de participantes de todo el mundo. Más de 500 inscritos se apuntaron para ver y debatir un conjunto de 55 pósters agrupados bajo los temas: Análisis avanzado de materiales; Ciencias medioambientales y geológicas; y Ciencias de la vida, investigación biomédica y farmacéutica. Los asistentes asistieron a cinco charlas presentadas por prestigiosos investigadores, se les invitó a ofrecer valoraciones que se recopilaron para determinar el ganador del premio al mejor póster de 2021, y más de 80 investigadores se inscribieron para participar en sesiones virtuales de demostración de equipos.

Durante el Simposio virtual de una semana, se invitó a los participantes a explorar la plataforma de la conferencia y a las presentaciones orales disponible para su uso bajo demanda. Una buena forma de empezar fue la detallada introducción a la espectroscopia y la microscopia Raman proporcionada por el Prof. Sebastian Schlücker (Universidad de Duisburg-Essen, Essen, Alemania). La profesora Barbara Cavalazzi (Universidad de Bolonia, Bolonia, Italia) describió cómo utiliza las imágenes Raman 3D en su trabajo sobre paleontología microbiana, incluida la detección de los metanógenos fosilizados más antiguos jamás encontrados. La profesora Dominique Lunter (Universidad Eberhard Karls, Tübingen, Alemania) compartió detalles de sus investigaciones sobre la penetración en la piel de ingredientes farmacéuticos y el impacto de los potenciadores de la penetración. La Dr. Ute Schmidt, de WITec, habló de los últimos avances en los estudios sobre dicalcogenuros de metales de transición y la profesora Laurene Tetard (Universidad de Florida Central, Orlando, EE.UU.) presentó los análisis Raman en 3D de los revestimientos de barrera térmica en los motores a reacción.

Además de los ponentes, los 55 pósteres aportaron una gran cantidad de contenidos científicos. Al finalizar, uno de los pósteres recibió la mejor valoración de los asistentes y ese honor corresponde a Jessica Caldwell, del Instituto Adolphe Merkle de la Universidad de Friburgo (Suiza). Ganó el premio al mejor póster por su contribución: Detección de varios nanoplásticos mediante sustratos de espectroscopia Raman de superficie (SERS) basados en nanopartículas de oro. Junto con Patricia Taladriz-Blanco, Barbara Rothen-Rutishauser y Alke Petri-Fink, exploró uno de los temas más resonantes de la ciencia contemporánea: la detección de partículas micro y nanoplásticas.

Anteriormente se habían ofrecido demostraciones de equipos in situ en nuestros laboratorios el último día del Simposio. Este año, las sesiones de mañana y tarde se ofrecieron en línea todos los días de la conferencia para dar cabida a más de 80 inscritos. Los científicos de aplicaciones de WITec mostraron los instrumentos en acción con demostraciones de imágenes Raman confocal, Raman-AFM, imágenes Raman topográficas y análisis de partículas basado en Raman acoplado a una base de datos espectral.

El 17th Confocal Raman Imaging Symposium floreció en su transición a un evento virtual. Dadas las recientes interrupciones, fue reconfortante ver que la comunidad de imágenes espectroscópicas persiste en reunirse para compartir, discutir y celebrar nuevas técnicas y descubrimientos. Esperamos volver a ver a todos en persona cuando sea posible.

El 18th Confocal Raman Imaging Symposium tendrá lugar del 26th al 28th de septiembre de 2022. Los detalles, incluida la lista de oradores invitados y las reseñas de los simposios anteriores, pueden encontrarse en la página web del Simposio de Imagen Raman Confocal: www.raman-symposium.com.

BestPosterAward2021 JessicaCaldwell AdolpheMerkleInstitute UniversityOfFribourg NEWS web

La ganadora del premio al mejor póster, Jessica Caldwell, presenta el certificado delante de su póster, sobre la detección de nanoplásticos, utilizando sustratos SERS basados en nanopartículas de oro. © Jessica Caldwell, Instituto Adolphe Merkle, Universidad de Friburgo, Suiza.

Mostrar Más...

Septiembre 2021

Raman microscopy detects titanium dioxide in food samples

Titanium dioxide (TiO2) has long been used as a white pigment (E 171) in the food industry. Recently it’s been subject to increased scrutiny due to concerns that it might be carcinogenic. In May 2021, the European Food Safety Authority (EFSA) announced that the substance can no longer be considered a safe food additive (EFSA web news). This led European food manufacturers to replace TiO2 in their products with alternative white pigments.

Raman imaging microscopy is a very effective method for analyzing food additives and TiO2 is especially easy to detect as it exhibits a strong Raman signal. This study is a comparison of the same kind of candy produced for two different markets: the EU and the USA. All of the pieces have a white “S” printed on their colorful coatings (A) and Raman analysis reveals the chemical identities of the pigments used. The measurements were performed with an alpha300 R equipped with a 488 nm excitation laser and TrueSurface technology for topographic Raman imaging and active focus stabilization.

Raman imaging clearly distinguished the print from the surrounding sugar coating in both candies and the topographic Raman images show their curved surfaces (B and C). The white pigments forming the S were identified by their Raman spectra as TiO2 in the USA candy (red in B and D) and calcium carbonate (CaCO3) in the EU candy (blue in C and D). Raman spectroscopy can even differentiate crystal forms of TiO2; The print in the USA candy consists of anatase (B and D).

Skittles News 504 Labels

Raman imaging of candy coatings. Photograph of the investigated candy (A). Topographic Raman images of the print on the candy produced for the USA (B) and the EU (C). The “S” prints are color coded according their Raman spectra (D), revealing that the white pigment is TiO2 in the USA, but CaCO3 in the EU.

Mostrar Más...

Septiembre 2021

WITec Now Officially Part of Oxford Instruments

We are pleased to announce that the final step in the acquisition process of WITec GmbH by Oxford Instruments plc has been concluded. WITec joins the Materials Analysis Group of the UK-based technology company with WITec’s founders Dr. Joachim Koenen and Dr. Olaf Hollricher continuing as Managing Directors. Further details about the acquisition were announced in our press release on June 16, 2021.

Dr. Ian Barkshire, Chief Executive, Oxford Instruments said, “We are delighted to complete the acquisition of WITec and welcome our new colleagues to Oxford Instruments. WITec’s leading Raman microscopy solutions are a great complement to our existing products and techniques. We look forward to growing the business through investment in R&D as well as enabling them to reach new customers through our global sales and service channels, thereby supporting our customers in facilitating a greener economy, achieve increased connectivity, improved health and leaps in scientific understanding.”

“We’re very grateful for the warm welcome we’ve all received from Oxford Instruments,” said Dr. Koenen, WITec co-founder and Managing Director. “Joining Oxford Instruments provides us with greater resources and enables continued growth while also maintaining WITec’s innovative spirit. Now that the formalities are completed, we look forward to working together with the other business units.”

HPNI Logos

Mostrar Más...

Agosto 2021

WITec alpha300 apyron wins 2021 Microscopy Today Innovation Award

The fully automated Raman microscope is deemed one of the year’s best developments.

Ulm, Germany
August 2, 2021

WITec GmbH, the prime mover of technological advance in commercial Raman microscopes, has received a 2021 Microscopy Today Innovation Award for its alpha300 apyron fully automated Raman imaging system.

It was selected by the editors of Microscopy Today as one of the ten most significant innovations in the areas of light microscopy, electron microscopy, and microanalysis. As described by the award organizers, “These innovations will make microscopy and microanalysis more powerful, more productive, and easier to accomplish.”

The alpha300 apyron delivers the full benefits of 3D Raman imaging at the click of a mouse, to researchers of all experience levels. Motorized components and software-driven routines enable self-optimization to accelerate experimental setup for increased sample turnover rates and to ensure the consistency of results. It is also capable of remote operation, in environmental enclosures such as glove boxes and even from home offices.

“We’re very honored to receive the 2021 Innovation Award,” said Harald Fischer, Marketing Director at WITec. “Microscopy Today is such an esteemed publication and they really understand what matters to the people in the labs, using the instruments. The alpha300 apyron brings all our know-how in optics, mechanics and software together so it’s great to have that recognized.”

For further details, please visit the alpha300 apyron product page.

MT IA News

The Innovation Award-winning alpha300 apyron

Mostrar Más...

Julio 2021

17th Confocal Raman Imaging Symposium Goes Virtual

Europe’s foremost molecular characterization conference will be held online.

Ulm, Germany
July 29, 2021

WITec GmbH, the technology leader in Raman microscopy solutions, has re-envisioned the Confocal Raman Imaging Symposium as a virtual event for its 17th year. This scientific conference has become highly regarded within the international chemical imaging community for its amiable atmosphere, compelling presentations and the range of research on display in its poster sessions.

With the enthusiastic reception to last year's Virtual Raman Imaging Poster Summit, and the ongoing complications regarding travel, the decision was made to adopt the online format for this year's event. With an established platform the 17th Confocal Raman Imaging Symposium will preserve both the scientific depth and variety characteristic of previous symposia with the convenience of worldwide distributed participation.

The Confocal Raman Imaging Symposium will take place from September 27th through October 1st, 2021. Invited speakers from pertinent fields of application will deliver presentations that can be viewed on demand throughout the week of the conference. The scientific poster sessions will be grouped into three categories: Advanced Materials Analysis, Environmental and Geo Science and Life Sciences, Biomedical and Pharma Research. Online equipment demonstrations will also be offered so that researchers can experience the latest Raman microscopy innovations in action.

Registration is now open and free of charge. Participants can look forward to seeing the current state of the art in confocal Raman imaging techniques and applications while interacting online with speakers and fellow attendees through the platform’s chat function. Details including the list of invited speakers, reviews of previous symposia, and registration information can be found on the Confocal Raman Imaging Symposium homepage: https://www.raman-symposium.com/

Symposium 2021 504 220 1

Mostrar Más...

Julio 2021

WITec and attocube launch cryoRaman

Technology leaders combine expertise for very low-temperature Raman imaging

Ulm, Germany - Haar, Germany
July 20, 2021

Raman imaging innovator WITec GmbH and cryogenic microscopy specialist attocube systems AG have jointly introduced cryoRaman. This cryogenic Raman imaging system integrates attocube’s leading-edge cryostat and nanopositioner technology with the vaunted sensitivity and modularity of WITec’s alpha300 correlative microscope series. For the first time, Raman imaging at the lowest temperatures in high magnetic fields is now easily accessible with unmatched spatial resolution.

Designed to meet existing and emerging challenges, cryoRaman offers excitation wavelengths from VIS to NIR with optimized spectrometers, 1.6K to 300K operating temperatures, high magnetic fields, patented cryogenic Raman-specific objectives and an exceptionally precise piezoelectric scan stage.

“We’ve seen interest in cryogenic Raman grow rapidly and expand beyond the initial core of graphene and carbon nanotube research groups,” said Florian Otto, Head of Business Sector Cryogenic Instruments at attocube. “We decided together with WITec to address the broadened user base’s increasingly varied experimental requirements. cryoRaman is the successful realization of that effort to redefine low-temperature chemical characterization in terms of user-friendliness, flexibility and outright capability.”

Research on phase-transitions and emergent properties of novel low-dimensional materials will benefit in particular from cryoRaman’s high magnetic field options. The solenoid or vector magnets, with a strength of up to 12T, are ideal for investigating transition metal dichalcogenides (TMDs) and van der Waals heterostructures, and can also help in determining the temperature- and magnetic field-dependence of photoluminescence. Optional modules include precise software-controlled laser power adjustment, multi-wavelength excitation capabilities, automated switching from optical microscopy to spectroscopic imaging, automated spectrometer calibration light source and routines, and time-correlated single photon counting (TCSPC) modes.

cryoRaman also introduces a pair of unique functionalities to cryogenic Raman microscopy: the ability to detect low-wavenumber Raman peaks, and full polarization control in excitation and detection. “Researchers looking at materials in cryogenic environments like to get as close as possible to the excitation wavelength, and they’re very interested in polarization measurements,” said Olaf Hollricher, Co-founder and Managing Director at WITec. “To meet those requirements, we developed features that have no equivalent in the marketplace. In fact, with its imaging capability at low temperatures, level of integration, performance and accessibility to both Raman newcomers and experts, cryoRaman is really in a class by itself.”

The close cooperation between attocube and WITec has produced an instrument ready for an unprecedented range of measurements. cryoRaman incorporates the very latest technology from two trailblazers in their respective fields to establish cryogenic Raman microscopy as a convenient, versatile and indispensable tool for materials scientists.

For more information and a detailed application note, please visit our cryoRaman product page

About WITec

WITec GmbH pioneered 3D Raman imaging and correlative microscopy and continues to lead the industry with a product portfolio that offers speed, sensitivity and resolution without compromise. Raman, AFM and SNOM microscopes, combinations thereof, and WITec-developed Raman-SEM (RISE) systems can be configured for specific challenges in chemical and structural characterization through a modular hardware and software architecture with built-in capacity for expansion. Research, development and production are located at WITec headquarters in Ulm, Germany, and the WITec sales and support network has an established presence in every global region.

About attocube

attocube systems AG is a leading pioneer for nanotechnology solutions in industry and research. The company develops, produces and distributes components and systems for nanoscale applications such as precision motion, cryogenic microscopy, and nanoscale analytics. All products are manufactured in the NanoFactory, the company’s headquarters in Haar, close to Munich. An international team of 200 physicists, engineers, software developers, and product designers work in close collaboration from conception through to delivery. attocube has sales offices in the US and a broad network of worldwide distributors, covering more than 40 countries and 4,000 customers.

cryoRaman News 2

Mostrar Más...

Junio 2021

La técnica "antibunching" de fotones identifica a los emisores de fotones individuales

WITec combina los experimentos de antibunching con la obtención rápida de imágenes Raman y de fotoluminiscencia.

Los emisores de fotones individuales tienen propiedades mecánicas cuánticas que se aprovechan en la tecnología cuántica y la ciencia de la información, incluido el desarrollo de computadores cuánticos y métodos de criptografía. Los centros de nitrógeno-vacante (NV) en los diamantes, las moléculas fluorescentes individuales, los nanotubos de carbono y los puntos cuánticos son ejemplos destacados de emisores de fotones individuales. Para identificarlos en una muestra, se suelen realizar experimentos de antibunching.

El antibunching es un efecto mecánico cuántico que revela el comportamiento de la luz como partícula. Surge porque un emisor de fotones individuales sólo puede emitir un fotón a la vez. El intervalo mínimo entre las emisiones de fotones depende principalmente del tiempo de vida del estado de excitación del emisor, ya que entre dos fotones debe completarse un ciclo de excitación y relajación. Si la señal se divide y se mide con dos detectores, cada fotón individual sólo puede ser detectado por uno de ellos. Por tanto, el antibunching da lugar a una anticorrelación de las señales de los dos detectores en tiempos de retardo muy cortos (experimento de Hanbury Brown-Twiss).

Aquí, WITec, en colaboración con PicoQuant , demostramos la integración de las mediciones de antibunching en un microscopio confocal Raman. Esta combinación permite caracterizar una muestra con imágenes rápidas Raman y de fotoluminiscencia (PL) e identificar áreas de interés para posteriores experimentos antibunching con el mismo instrumento, un microscopio Raman WITec alpha300. Las mediciones de antibunching se realizan en una configuración Hanbury Brown-Twiss, en la que la señal se divide mediante un divisor de haz 50/50 y se detecta mediante dos APD. Ambos detectores están conectados a una unidad contadora de fotones individuales correlacionados en el tiempo (TCSPC) MultiHarp 150 de PicoQuant, que registra el retardo entre dos eventos de un solo fotón con una resolución de picosegundos. Un histograma de las diferencias de tiempo muestra una pronunciada caída para tiempos muy cortos, es decir, antibunching, si la estructura investigada es un emisor monofotónico. Las mediciones del tiempo de vida también son posibles en esta configuración. Se aplicó un láser de onda continua de 532 nm para la excitación, pero la configuración también admite otras longitudes de onda y fuentes de láser pulsado.

Demostramos esta funcionalidad utilizando una muestra de micropilares de diamante, una fracción de los cuales contiene centros NV individuales. La muestra fue proporcionada por cortesía del Dr. Rainer Stöhr y el Prof. Dr. Jörg Wrachtrup del 3rd Instituto de Física de la Universidad de Stuttgart, Alemania.

Los pilares se visualizaron primero con microscopía Raman y PL. La imagen Raman representa la intensidad del pico del diamante a 1330 cm-1 y revela las posiciones de los pilares intactos (Fig. A). En la imagen de fluorescencia, algunos pilares son particularmente brillantes, indicando la presencia de centros NV (Fig. B). Comparando las imágenes Raman y PL, se pueden distinguir las estructuras de interés de las contaminaciones fluorescentes en la muestra: los pilares intactos con centros NV muestran una fuerte señal Raman de diamante y fluorescencia brillante (flechas en las Fig. A y B), mientras que las contaminaciones carecen de señal Raman.

Se realizaron experimentos de antibunching en algunas de las estructuras de interés identificadas para comprobar la presencia de centros NV individuales. La curva de correlación resultante para un pilar seleccionado se muestra en la Fig. C. El histograma tiene una pronunciada caída en una diferencia de tiempo de detección de cero. Esto indica que el micropilar observado contenía efectivamente un único centro NV y era un emisor monofotónico. La caída observada en la curva hacia tiempos de retardo más largos revela la presencia de un estado de estante, que es un fenómeno bien conocido para los centros NV de diamante.

La integración de los experimentos de antibunching en un microscopio confocal Raman ofrece muchas ventajas. Este instrumento es capaz de llevar a cabo tanto la caracterización química resuelta espacialmente como también investigaciones en mecánica cuántica. Como se ha demostrado aquí, la correlación de las señales Raman y de fotoluminiscencia puede preseleccionar ubicaciones posibles para los centros NV que se confirmarán posteriormente mediante experimentos de antibunching. Esto proporciona una valiosa visión y un flujo de trabajo acelerado a los investigadores que exploran emisores de fotones individuales para su uso en tecnologías emergentes, incluyendo los ordenadores cuánticos.

Antibunching NVcenter web

Identificación de emisores de fotones individuales en micropilares de diamante que contienen centros NV. A: Imagen de intensidad Raman de la línea de diamante (1330 cm-1). Los puntos brillantes representan micropilares de diamante intactos. B: Imagen de intensidad de fluorescencia de la misma zona. Los puntos brillantes se originan en los centros NV y en las contaminaciones fluorescentes. Los micropilares con centros NV muestran tanto la señal Raman como la fluorescente (flechas). C: Curva de antibunching de fotones de un centro NV. La pronunciada caída en el histograma a diferencia de tiempo cero indica la presencia de un emisor individual. Muestra: cortesía del Dr. Rainer Stöhr y el Prof. Dr. Jörg Wrachtrup del 3rd Instituto de Física de la Universidad de Stuttgart

Mostrar Más...

Junio 2021

WITec GmbH joins Oxford Instruments plc

The management team of WITec GmbH is proud to announce that WITec was acquired by Oxford Instruments plc, a UK based company that has a great reputation in the scientific community, and in the future will be part of their Materials Analysis Group. WITec’s founders Dr. Joachim Koenen and Dr. Olaf Hollricher will continue as Managing Directors and the well-established WITec brand will be retained in the new organizational structure.

Founded in 1997, WITec grew from a small university spin-off into the most innovative Raman imaging company. It made exceptional progress in developing microscopy technology and installed more than a thousand Raman, AFM and SNOM systems worldwide.

“We look back on a 24-year track record of making WITec a prosperous and most innovative Raman imaging company. Now that we are joining the Oxford Instruments Group, we look forward to continuing this success together with a strong partner to grow even faster and to use existing synergies to further expand our reach into the range of markets that will benefit from our wide product portfolio,” Koenen said.

“WITec developed ground-breaking solutions in confocal Raman microscopy and correlative Raman microscopy. Oxford Instruments’ key technologies in AFM and scientific spectroscopic cameras with the brands Asylum and Andor puts WITec in an even better position for future developments,” Hollricher added.

Ian Barkshire, Chief Executive, Oxford Instruments said, “We are delighted to welcome WITec colleagues to Oxford Instruments. WITec’s leading Raman microscopy solutions are a great complement to our existing products and techniques. Raman microscopy is an important and widely used technique across academic and commercial customers for fundamental research, applied R&D and QA/QC. The technique is used in conjunction with and alongside our existing characterization solutions and broadens the capabilities that we can bring to existing customers and expands opportunities into new market areas. Providing a broader range of solutions helps us support our customers in facilitating a greener economy, increasing connectivity, improving health and achieving leaps in scientific understanding.”

Ian Wilcock, Managing Director of Oxford Instruments Nanoanalysis and Magnetic Resonance added, “We look forward to working with our new colleagues at WITec to develop new routes to market for their products. WITec’s RISE Raman for SEM product, for example, will ideally complement our own extensive suite of analyzers for electron microscopes.”

WITec will, of course, fulfill its obligations toward existing customers and business partners in the usual manner and the management team will work to make the transition as smooth as possible.

See the official press release from Oxford Instruments here.

 

WITecOxford mit Logos 504x424px

The companies’ representatives following the official announcement at WITec Headquarters in Ulm, Germany. From left to right: Joachim Koenen (Managing Director at WITec), Alexandra Lipes (HR Generalist at Oxford Instruments), Dirk Keune (Managing Director Germany and Director Sales EMEAI at Oxford Instruments) and Olaf Hollricher (Managing Director at WITec).

Mostrar Más...

Junio 2021

Observing polymerization reactions with Raman microscopy

Polymerization reactions are involved in many industrial processes and also occur in everyday tasks, for example during the hardening of glues and drying of paints and varnishes. In order to optimize their products, manufacturers require analytical methods for monitoring polymerization reactions and evaluating the influence of chemical modifications or additives such as catalysts. Here we use Raman imaging for monitoring the polymerization of an air-drying alkyd resin varnish. Such products are commonly used for protective coating of wood and other materials.

The liquid sample was applied to a microscope slide and the polymerization progress was characterized as a function of depth and time using a WITec alpha300 Raman microscope. To this end, an initial depth scan through the entire coating layer was recorded, followed by one per hour at the same sample position for a total of 25. Due to the system’s automated components, no user interaction was required during the entire investigation time of 24 hours. Each of the presented Raman images covers an area of 25 x 31 µm² and consists of 3900 spectra recorded in about 8 minutes.

First, all images were analyzed with the TrueComponent Analysis feature of the WITec Project software. Three components were identified by their Raman spectra and attributed to the liquid varnish, the polymerized product and the glass substrate. The image series clearly shows that the hardening process began at the interface between the air and the varnish and progressed through the sample over time (Fig. A and video). After 24 hours, the sample was almost completely hardened. A small stretch of unpolymerized sample was still present at the glass interface after 24 hours, but was no longer detectable when the sample was re-measured a few weeks later.

The spectra of liquid and solid varnish differed mainly in the intensity of the C=C stretching mode at 1654 cm-1 wavenumbers (Fig. B). As the C=C double bonds react during the polymerization, this peak’s intensity is drastically reduced in the Raman spectrum of the product. This enabled an even more detailed monitoring of the polymerization reaction. While the C=C stretching mode was decreased during the reaction, the C-H stretching mode (ca. 3072 cm-1) stayed almost constant. The ratio of these two peaks thus served as a measure for the polymerization progress. It was quantified for each pixel by peak fitting and the mean of each image line was plotted over the sample depth and the observation time (Fig. C). The graph illustrates in detail how the polymerization progresses over time into the deeper layers of the varnish.

For more examples for Raman imaging of polymers, visit our applications section about polymers or download our Application Note about polymeric materials.

Alkydharz WebNews

Polymerization reaction of an alkyd resin varnish monitored over 24 hours. 2D Raman depth scans at different times after the reaction start (A), color coded according to the Raman spectra (B) of liquid varnish (red), polymerized product (blue) and glass substrate (green). Polymerization progress versus depth and time (C). See text for more details.

Mostrar Más...

Mayo 2021

El WITec Paper Award 2021 reconoce tres publicaciones sobresalientes

Ulm, Alemania  
6 de mayo de 2021

Tres publicaciones científicas han sido reconocidas por el WITec Paper Award, un concurso anual entre artículos del año anterior, sometidos a revisión por expertos, que presentan resultados adquiridos con un microscopio WITec. La excepcional calidad de las 115 publicaciones presentadas hizo especialmente difícil la selección de sólo tres ganadores. Los premios a los artículos de 2021 son para investigadores del Reino Unido, Turquía y Estados Unidos, quienes realizaron mediciones e imágenes Raman en embriones de pez cebra, meteoritos y revestimientos de barrera térmica de motores de reacción, respectivamente. WITec felicita a los ganadores y agradece a todos los participantes.

  • ORO: H. Høgset, C. C. Horgan, J. P. K. Armstrong, M. S. Bergholt, V. Torraca, Q. Chen, T. J. Keane, L. Bugeon, M. J. Dallman, S. Mostowy, M. M. Stevens (2020) In vivo biomolecular imaging of zebrafish embryos using confocal Raman spectroscopy. Nature Communications 11: 6172 www.doi.org/10.1038/s41467-020-19827-1
  • PLATA: M. Yesiltas, M. Kaya, T. D. Glotch, R. Brunetto, A. Maturilli, J. Helbert, M. E. Özel (2020) Biconical reflectance, micro-Raman, and nano-FTIR spectroscopy of the Didim (H3-5) meteorite: Chemical content and molecular variations. Meteoritics & Planetary Science 55: 2404-2421 www.doi.org/10.1111/maps.13585
  • BRONCE: C. Barrett, Z. Stein, J. Hernandez, R. Naraparaju, U. Schulz, L. Tetard, S. Raghavan (2021) Detrimental effects of sand ingression in jet engine ceramic coatings captured with Raman-based 3D rendering. Journal of the European Ceramic Society 41: 1664-1671 (available online 2020) www.doi.org/10.1016/j.jeurceramsoc.2020.09.050

Para ver la lista de todos los ganadores de premios anteriores, por favor visite www.witec.de/paper-award.

 

El Paper Award ORO: Imágenes Raman de embriones de pez cebra

El pez cebra es un organismo modelo bien conocido en ciencias de la vida y se utiliza con frecuencia para estudiar el desarrollo embrionario y diversas enfermedades. Håkon Høgset, del Imperial College London (ICL), Reino Unido, recibe el Primer lugar del Paper Award 2021, por demostrar la versatilidad de la imagen confocal Raman para la caracterización biomolecular de embriones de pez cebra. Junto con sus colaboradores del ICL y del London School of Hygiene & Tropical Medicine, estableció que la distribución de diversas biomoléculas, como los lípidos y las proteínas, pueden visualizarse en un embrión a diferentes escalas. En primer lugar, las imágenes Raman en 3D de embriones enteros de pez cebra de varios milímetros de longitud demostraron la obtención de imágenes Raman de todo un organismo. En segundo lugar, las imágenes Raman de alta resolución revelaron características a microescala de secciones de tejido del músculo dorsal, la cola y el intestino. A continuación se utilizó la imagen Raman para detectar grupos de infección micobacteriana en un modelo de pez cebra para la tuberculosis. Basándose en las diferencias metabólicas, la espectroscopia Raman pudo incluso distinguir entre infecciones procedentes de diferentes cepas. Por último, las imágenes Raman de lapso de tiempo monitorizaron los cambios moleculares durante la respuesta a la herida en embriones vivos durante varias horas. Los autores esperan que "la capacidad de realizar imágenes volumétricas e in vivo en embriones no marcados debería proporcionar una gran cantidad de nuevas oportunidades para la investigación del pez cebra que pueden complementar fácilmente las técnicas de imagen de fluorescencia existentes".

El Paper Award SILVER: Caracterización química de meteoritos

A partir de la composición química de los meteoritos, los científicos planetarios pueden aprender mucho sobre la historia de sus objetos de origen. "El estudio de los meteoritos y de sus objetos de origen nos ayuda a comprender cómo se formó y evolucionó nuestro sistema solar", afirma Mehmet Yesiltas, de la Universidad de Kirklareli (Turquía), ganador del premio de Plata del Paper Award 2021. Su publicación presenta un análisis químico detallado del meteorito Didim, que investigó junto con sus colegas de instituciones de investigación de Turquía, Estados Unidos, Francia y Alemania. El meteorito Didim (llamado así por Didim, Turquía, donde cayó en 2007) es una condrita con una composición mineralógica relativamente rara y variada, lo que lo hace especialmente interesante. Los autores investigaron su composición química a diferentes escalas utilizando tres métodos espectroscópicos. La espectroscopia de reflectancia bicónica se utilizó para una evaluación inicial a gran escala y reveló principalmente silicatos anhidros. A continuación, las imágenes Raman permitieron una caracterización más precisa de los minerales de la roca, incluidos los feldespatos, el olivino y el piroxeno, y su distribución a escala micrométrica. Asimismo, se demostró la existencia de hidrocarburos aromáticos de diferentes grados de metamorfismo térmico en el interior del meteorito. Las imágenes Raman 3D no destructivas mostraron que la materia carbonosa estaba presente debajo de un grano de olivino, dentro del meteorito, lo que sugiere su origen extraterrestre. Además, la espectroscopia nano-FTIR indicó que la composición mineralógica de la roca variaba incluso a escala submicrométrica.

El Paper Award BRONCE: Degradación termoquímica de los revestimientos cerámicos

Los motores a reacción están protegidos contra sus altísimas temperaturas de funcionamiento mediante revestimientos de barrera térmica (TBC). La penetración de calcio, magnesio y aluminosilicatos (CMAS) fundidos en un TBC durante el vuelo provoca graves daños en él y acorta la vida útil del motor. Chance Barrett, de la Universidad de Florida Central (UCF), EE.UU., gana el premio de Bronce del Paper Award 2021 por presentar imágenes Raman 3D como método no destructivo para analizar la degradación de los TBC producida por CMAS, junto con sus colegas de la UCF y del Centro Aeroespacial Alemán. La penetración de CMAS provoca una transición del TBC a la fase monoclínica. La fracción de volumen de esta fase representa, por tanto, una forma de medir el grado de degradación y puede cuantificarse con imágenes Raman. Los mapas Raman 3D de los TBCs visualizaron la degradación en función de la profundidad. El daño era menos pronunciado en el núcleo de las columnas que forman el TBC que en sus bordes, porque los huecos entre las columnas eran más accesibles. Además, las mediciones dependientes del tiempo mostraron que la mayor parte del daño se produjo durante la primera hora de infiltración de CMAS. Los resultados se validaron mediante microscopía electrónica de barrido y espectroscopia de rayos X de energía dispersiva. Hasta donde saben los autores, su estudio es el primero que presenta una caracterización tridimensional no destructiva de la degradación del TBC con alta resolución. Postulan que "esta capacidad de caracterizar cuantitativamente y de forma no destructiva la degradación de los TBC infiltrados con CMAS acelerará el desarrollo de revestimientos resistentes a la degradación".

 

No pierda su oportunidad en el WITec Paper Award 2022

WITec invita a científicos de todos los ámbitos de investigación a participar en el concurso Paper Award 2022 (www.witec.de/paper-award). Los artículos son elegibles si fueron publicados en 2021 en una revista científica y presentan resultados (al menos parcialmente) obtenidos con un instrumento WITec. Envíe su trabajo en formato PDF a papers@witec.de antes del 31 de enero de 2022. WITec espera recibir de sus publicaciones más destacadas.

WITec PaperAward 2021 allWinners web

Los ganadores del WITec Paper Award 2021. De arriba hacia abajo: Los grupos ganadores de los premios Oro, Plata y Bronce. A continuación se pueden descargar imágenes de alta resolución y descripciones de más detalladas de las imágenes.

Mostrar Más...